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Objectives 

n  To understand the basic techniques for 
analyzing the efficiency of algorithms. 

n  To know what searching is and understand 
the algorithms for linear and binary 
search. 

n  To understand the basic principles of 
recursive definitions and functions and be 
able to write simple recursive functions. 
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Objectives 

n  To understand sorting in depth and 
know the algorithms for selection sort 
and merge sort. 

n  To appreciate how the analysis of 
algorithms can demonstrate that some 
problems are intractable and others are 
unsolvable. 
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Searching 

n  Searching is the process of looking for a 
particular value in a collection. 

n  For example, a program that maintains 
a membership list for a club might need 
to look up information for a particular 
member – this involves some sort of 
search process. 
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A simple Searching Problem 

n  Here is the specification of a simple 
searching function: 
 
def search(x, nums): 
    # nums is a list of numbers and x is a number 
    # Returns the position in the list where x 
occurs  

 # or -1 if x is not in the list. 

n  Here are some sample interactions: 
>>> search(4, [3, 1, 4, 2, 5]) 
2 
>>> search(7, [3, 1, 4, 2, 5]) 
-1 
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A Simple Searching Problem 

n  In the first example, the function 
returns the index where 4 appears in 
the list. 

n  In the second example, the return value 
-1 indicates that 7 is not in the list. 

n  Python includes a number of built-in 
search-related methods! 
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A Simple Searching Problem 

n  We can test to see if a value appears in 
a sequence using in. 
 
if x in nums: 
    # do something 

n  If we want to know the position of x in 
a list, the index method can be used. 
>>> nums = [3, 1, 4, 2, 5] 
>>> nums.index(4) 
2 
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A Simple Searching Problem 

n  The only difference between our 
search function and index is that 
index raises an exception if the target 
value does not appear in the list. 

n  We could implement search using 
index by simply catching the exception 
and returning -1 for that case. 
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A Simple Searching Problem 
n  def search(x, nums): 

    try: 
        return nums.index(x) 
    except: 
        return -1 

n  Sure, this will work, but we are really 
interested in the algorithm used to 
actually search the list in Python! 
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Strategy 1: Linear Search 
n  Pretend you’re the computer, and you were 

given a page full of randomly ordered 
numbers and were asked whether 13 was in 
the list. 

n  How would you do it? 
n  Would you start at the top of the list, 

scanning downward, comparing each number 
to 13? If you saw it, you could tell me it was 
in the list. If you had scanned the whole list 
and not seen it, you could tell me it wasn’t 
there. 
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Strategy 1: Linear Search 

n  This strategy is called a linear search, 
where you search through the list of 
items one by one until the target value 
is found. 

n  def search(x, nums): 
    for i in range(len(nums)): 
        if nums[i] == x: # item found, return the index value 
            return i 
    return -1            # loop finished, item was not in list 

n  This algorithm wasn’t hard to develop, 
and works well for modest-sized lists. 
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Strategy 1: Linear Search 

n  The Python in and index operations 
both implement linear searching 
algorithms. 

n  If the collection of data is very large, it 
makes sense to organize the data 
somehow so that each data value 
doesn’t need to be examined. 
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Strategy 1: Linear Search 

n  If the data is sorted in ascending order 
(lowest to highest), we can skip checking 
some of the data. 

n  As soon as a value is encountered that is 
greater than the target value, the linear 
search can be stopped without looking at the 
rest of the data. 

n  On average, this will save us about half the 
work. 
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Strategy 2: Binary Search 

n  If the data is sorted, there is an even better 
searching strategy – one you probably 
already know! 

n  Have you ever played the number guessing 
game, where I pick a number between 1 and 
100 and you try to guess it? Each time you 
guess, I’ll tell you whether your guess is 
correct, too high, or too low. What strategy 
do you use? 
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Strategy 2: Binary Search 

n  Young children might simply guess 
numbers at random. 

n  Older children may be more systematic, 
using a linear search of 1, 2, 3, 4, … 
until the value is found. 

n  Most adults will first guess 50. If told 
the value is higher, it is in the range 
51-100. The next logical guess is 75. 
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Strategy 2: Binary Search 

n  Each time we guess the middle of the 
remaining numbers to try to narrow 
down the range. 

n  This strategy is called binary search. 
n  Binary means two, and at each step we 

are diving the remaining group of 
numbers into two parts. 
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Strategy 2: Binary Search 

n  We can use the same approach in our 
binary search algorithm! We can use two 
variables to keep track of the endpoints of 
the range in the sorted list where the 
number could be. 

n  Since the target could be anywhere in the 
list, initially low is set to the first location 
in the list, and high is set to the last. 
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Strategy 2: Binary Search 

n  The heart of the algorithm is a loop that looks 
at the middle element of the range, 
comparing it to the value x. 

n  If x is smaller than the middle item, high is 
moved so that the search is confined to the 
lower half. 

n  If x is larger than the middle item, low is 
moved to narrow the search to the upper 
half. 
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Strategy 2: Binary Search 

n  The loop terminates when either 
n  x is found 
n  There are no more places to look 

(low > high) 
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Strategy 2: Binary Search 
def search(x, nums): 
    low = 0 
    high = len(nums) - 1 
    while low <= high:        # There is still a range to search 
        mid = (low + high)//2 # Position of middle item 
        item = nums[mid] 
        if x == item:         # Found it! Return the index 
            return mid 
        elif x < item:        # x is in lower half of range 
            high = mid - 1    #  move top marker down 
        else:                 # x is in upper half of range 
            low = mid + 1     #  move bottom marker up 
    return -1                 # No range left to search, 
                              # x is not there 
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Comparing Algorithms 
n  Which search algorithm is better, linear or 

binary? 
n  The linear search is easier to understand and 

implement 
n  The binary search is more efficient since it doesn’t 

need to look at each element in the list 
n  Intuitively, we might expect the linear search 

to work better for small lists, and binary 
search for longer lists. But how can we be 
sure? 
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Comparing Algorithms 

n  One way to conduct the test would be to 
code up the algorithms and try them on 
varying sized lists, noting the runtime. 
n  Linear search is generally faster for lists of length 

10 or less 
n  There was little difference for lists of 10-1000 
n  Binary search is best for 1000+ (for one million list 

elements, binary search averaged .0003 seconds 
while linear search averaged 2.5 second) 
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Comparing Algorithms 
n  While interesting, can we guarantee that 

these empirical results are not dependent on 
the type of computer they were conducted 
on, the amount of memory in the computer, 
the speed of the computer, etc.? 

n  We could abstractly reason about the 
algorithms to determine how efficient they 
are. We can assume that the algorithm with 
the fewest number of “steps” is more 
efficient. 
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Comparing Algorithms 

n  How do we count the number of 
“steps”? 

n  Computer scientists attack these 
problems by analyzing the number of 
steps that an algorithm will take relative 
to the size or difficulty of the specific 
problem instance being solved. 
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Comparing Algorithms 

n  For searching, the difficulty is determined by 
the size of the collection – it takes more steps 
to find a number in a collection of a million 
numbers than it does in a collection of 10 
numbers. 

n  How many steps are needed to find a value in 
a list of size n? 

n  In particular, what happens as n gets very 
large? 
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Comparing Algorithms 
n  Let’s consider linear search. 

n  For a list of 10 items, the most work we might have to 
do is to look at each item in turn – looping at most 10 
times. 

n  For a list twice as large, we would loop at most 20 
times. 

n  For a list three times as large, we would loop at most 
30 times! 

n  The amount of time required is linearly 
related to the size of the list, n. This is what 
computer scientists call a linear time 
algorithm. 
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Comparing Algorithms 

n  Now, let’s consider binary search. 
n  Suppose the list has 16 items. Each time through 

the loop, half the items are removed. After one 
loop, 8 items remain. 

n  After two loops, 4 items remain. 
n  After three loops, 2 items remain 
n  After four loops, 1 item remains. 

n  If a binary search loops i times, it can find a 
single value in a list of size 2i. 
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Comparing Algorithms 

n  To determine how many items are 
examined in a list of size n, we need to 
solve           for i, or            . 

n  Binary search is an example of a log 
time algorithm – the amount of time it 
takes to solve one of these problems 
grows as the log of the problem size. 

2in = 2logi n=
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Comparing Algorithms 
n  This logarithmic property can be very 

powerful! 
n  Suppose you have the New York City phone 

book with 12 million names. You could walk 
up to a New Yorker and, assuming they are 
listed in the phone book, make them this 
proposition: “I’m going to try guessing your 
name. Each time I guess a name, you tell me 
if your name comes alphabetically before or 
after the name I guess.” How many guesses 
will you need? 
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Comparing Algorithms 

n  Our analysis shows us the answer to 
this question is                     . 

n  We can guess the name of the New 
Yorker in 24 guesses! By comparison, 
using the linear search we would need 
to make, on average, 6,000,000 
guesses! 

2log 12000000
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Comparing Algorithms 

n  Earlier, we mentioned that Python uses 
linear search in its built-in searching 
methods. We doesn’t it use binary 
search? 
n  Binary search requires the data to be 

sorted 
n  If the data is unsorted, it must be sorted 

first! 
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Recursive Problem-Solving 

n  The basic idea between the binary 
search algorithm was to successfully 
divide the problem in half. 

n  This technique is known as a divide and 
conquer approach. 

n  Divide and conquer divides the original 
problem into subproblems that are 
smaller versions of the original problem. 
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Recursive Problem-Solving 

n  In the binary search, the initial range is 
the entire list. We look at the middle 
element… if it is the target, we’re done. 
Otherwise, we continue by performing a 
binary search on either the top half or 
bottom half of the list. 
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Recursive Problem-Solving 
Algorithm: binarySearch – search for x in nums[low]…nums[high] 
 

mid = (low + high)//2 

if low > high 
 x is not in nums 

elsif x < nums[mid] 
 perform binary search for x in nums[low]…nums[mid-1] 

else 

 perform binary search for x in nums[mid+1]…nums[high] 
 

n  This version has no loop, and seems to 
refer to itself! What’s going on?? 



Python Programming, 2/e 35 

Recursive Definitions 

n  A description of something that refers 
to itself is called a recursive definition. 

n  In the last example, the binary search 
algorithm uses its own description – a 
“call” to binary search “recurs” inside 
of the definition – hence the label 
“recursive definition.” 
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Recursive Definitions 

n  Have you had a teacher tell you that 
you can’t use a word in its own 
definition? This is a circular definition. 

n  In mathematics, recursion is frequently 
used. The most common example is the 
factorial: 

n  For example, 5! = 5(4)(3)(2)(1), or 
5! = 5(4!) 

! ( 1)( 2)...(1)n n n n= − −



Python Programming, 2/e 37 

Recursive Definitions 

n  In other words, 
 

n  Or   
 

n  This definition says that 0! is 1, while 
the factorial of any other number is that 
number times the factorial of one less 
than that number. 

! ( 1)!n n n= −

1           if 0
!

( 1)!   otherwise
n

n
n n

=⎧
= ⎨ −⎩
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Recursive Definitions 

n  Our definition is recursive, but definitely 
not circular. Consider 4! 
n  4! = 4(4-1)! = 4(3!) 
n  What is 3!? We apply the definition again 

4! = 4(3!) = 4[3(3-1)!] = 4(3)(2!) 
n  And so on… 

4! = 4(3!) = 4(3)(2!) = 4(3)(2)(1!) = 4(3)
(2)(1)(0!) = 4(3)(2)(1)(1) = 24 
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Recursive Definitions 

n  Factorial is not circular because we 
eventually get to 0!, whose definition 
does not rely on the definition of 
factorial and is just 1. This is called a 
base case for the recursion. 

n  When the base case is encountered, we 
get a closed expression that can be 
directly computed. 
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Recursive Definitions 
n  All good recursive definitions have these two 

key characteristics: 
n  There are one or more base cases for which no 

recursion is applied. 
n  All chains of recursion eventually end up at one of 

the base cases. 
n  The simplest way for these two conditions to 

occur is for each recursion to act on a smaller 
version of the original problem. A very small 
version of the original problem that can be 
solved without recursion becomes the base 
case. 
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Recursive Functions 

n  We’ve seen previously that factorial can 
be calculated using a loop accumulator. 

n  If factorial is written as a separate 
function: 
def fact(n): 
    if n == 0: 
        return 1 
    else: 
        return n * fact(n-1) 
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Recursive Functions 

n  We’ve written a function that calls 
itself, a recursive function. 

n  The function first checks to see if we’re 
at the base case (n==0). If so, return 1. 
Otherwise, return the result of 
multiplying n by the factorial of n-1, 
fact(n-1). 
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Recursive Functions 
>>> fact(4) 
24 
>>> fact(10) 
3628800 
>>> fact(100) 
93326215443944152681699238856266700490715968264381621468592963

89521759999322991560894146397615651828625369792082722375825
1185210916864000000000000000000000000L 

>>>  

n  Remember that each call to a function 
starts that function anew, with its own 
copies of local variables and 
parameters. 
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Recursive Functions 
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Example: String Reversal 

n  Python lists have a built-in method that 
can be used to reverse the list. What if 
you wanted to reverse a string? 

n  If you wanted to program this yourself, 
one way to do it would be to convert 
the string into a list of characters, 
reverse the list, and then convert it 
back into a string. 
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Example: String Reversal 

n  Using recursion, we can calculate the 
reverse of a string without the 
intermediate list step. 

n  Think of a string as a recursive object: 
n  Divide it up into a first character and “all 

the rest” 
n  Reverse the “rest” and append the first 

character to the end of it 
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Example: String Reversal 
n  def reverse(s): 

    return reverse(s[1:]) + s[0] 

n  The slice s[1:] returns all but the first 
character of the string. 

n  We reverse this slice and then 
concatenate the first character (s[0]) 
onto the end. 
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Example: String Reversal 
n  >>> reverse("Hello") 

 
Traceback (most recent call last): 
  File "<pyshell#6>", line 1, in -toplevel- 
    reverse("Hello") 
  File "C:/Program Files/Python 2.3.3/z.py", line 8, in reverse 
    return reverse(s[1:]) + s[0] 
  File "C:/Program Files/Python 2.3.3/z.py", line 8, in reverse 
    return reverse(s[1:]) + s[0] 
… 
 File "C:/Program Files/Python 2.3.3/z.py", line 8, in reverse 
    return reverse(s[1:]) + s[0] 
RuntimeError: maximum recursion depth exceeded 

n  What happened? There were 1000 lines 
of errors! 
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Example: String Reversal 

n  Remember: To build a correct recursive 
function, we need a base case that 
doesn’t use recursion. 

n  We forgot to include a base case, so 
our program is an infinite recursion. 
Each call to reverse contains another 
call to reverse, so none of them 
return. 
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Example: String Reversal 

n  Each time a function is called it takes some 
memory. Python stops it at 1000 calls, the 
default “maximum recursion depth.” 

n  What should we use for our base case? 
n  Following our algorithm, we know we will 

eventually try to reverse the empty string. 
Since the empty string is its own reverse, we 
can use it as the base case. 
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Example: String Reversal 
n  def reverse(s): 

    if s == "": 
        return s 
    else: 
        return reverse(s[1:]) + s[0] 

n  >>> reverse("Hello") 
'olleH' 
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Example: Anagrams 

n  An anagram is formed by rearranging 
the letters of a word. 

n  Anagram formation is a special case of 
generating all permutations 
(rearrangements) of a sequence, a 
problem that is seen frequently in 
mathematics and computer science. 



Python Programming, 2/e 53 

Example: Anagrams 

n  Let’s apply the same approach from 
the previous example. 
n  Slice the first character off the string. 
n  Place the first character in all possible 

locations within the anagrams formed from 
the “rest” of the original string. 
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Example: Anagrams 

n  Suppose the original string is “abc”. Stripping 
off the “a” leaves us with “bc”. 

n  Generating all anagrams of “bc” gives us 
“bc” and “cb”. 

n  To form the anagram of the original string, 
we place “a” in all possible locations within 
these two smaller anagrams: [“abc”, “bac”, 
“bca”, “acb”, “cab”, “cba”] 
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Example: Anagrams 

n  As in the previous example, we can use 
the empty string as our base case. 

n  def anagrams(s): 
    if s == "": 
        return [s] 
    else: 
        ans = [] 
        for w in anagrams(s[1:]): 
            for pos in range(len(w)+1): 
                ans.append(w[:pos]+s[0]+w[pos:]) 
        return ans 
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Example: Anagrams 
n  A list is used to accumulate results. 
n  The outer for loop iterates through each 

anagram of the tail of s. 
n  The inner loop goes through each position in 

the anagram and creates a new string with 
the original first character inserted into that 
position. 

n  The inner loop goes up to len(w)+1 so the 
new character can be added at the end of the 
anagram. 
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Example: Anagrams 

n  w[:pos]+s[0]+w[pos:] 
n  w[:pos] gives the part of w up to, but not 

including, pos. 
n  w[pos:] gives everything from pos to 

the end. 
n  Inserting s[0] between them effectively 

inserts it into w at pos. 
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Example: Anagrams 

n  The number of anagrams of a word is 
the factorial of the length of the word. 

n  >>> anagrams("abc") 
['abc', 'bac', 'bca', 'acb', 'cab', 'cba'] 
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Example: Fast Exponentiation 

n  One way to compute an for an integer n 
is to multiply a by itself n times. 

n  This can be done with a simple 
accumulator loop: 
 
def loopPower(a, n): 
    ans = 1 
    for i in range(n): 
        ans = ans * a 
    return ans 
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Example: Fast Exponentiation  
n  We can also solve this problem using divide 

and conquer. 
n  Using the laws of exponents, we know that 28 

= 24(24). If we know 24, we can calculate 28 
using one multiplication. 

n  What’s 24? 24 = 22(22), and 22 = 2(2). 
n  2(2) = 4, 4(4) = 16, 16(16) = 256 = 28 
n  We’ve calculated 28 using only three 

multiplications! 
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Example: Fast Exponentiation 

n  We can take advantage of the fact that 
an = an//2(an//2) 

n  This algorithm only works when n is 
even. How can we extend it to work 
when n is odd? 

n  29 = 24(24)(21) 
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Example: Fast Exponentiation  

n  This method relies on integer division (if 
n is 9, then n//2 = 4). 

n  To express this algorithm recursively, 
we need a suitable base case. 

n  If we keep using smaller and smaller 
values for n, n will eventually be equal 
to 0 (1//2 = 0), and  a0 = 1 for any 
value except a = 0. 
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Example: Fast Exponentiation 
n  def recPower(a, n): 

    # raises a to the int power n 
    if n ==  0: 
        return 1 
    else: 
        factor = recPower(a, n//2) 
        if n%2 == 0:    # n is even 
            return factor * factor 
        else:           # n is odd 
            return factor * factor * a 

n  Here, a temporary variable called factor 
is introduced so that we don’t need to 
calculate an//2 more than once, simply 
for efficiency. 
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Example: Binary Search 

n  Now that you’ve seen some recursion 
examples, you’re ready to look at doing 
binary searches recursively. 

n  Remember: we look at the middle value first, 
then we either search the lower half or upper 
half of the array. 

n  The base cases are when we can stop 
searching,namely, when the target is found 
or when we’ve run out of places to look. 
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Example: Binary Search 

n  The recursive calls will cut the search in 
half each time by specifying the range 
of locations that are “still in play”, i.e. 
have not been searched and may 
contain the target value. 

n  Each invocation of the search routine 
will search the list between the given 
low and high parameters. 
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Example: Binary Search 
n  def recBinSearch(x, nums, low, high): 

    if low > high:           # No place left to look, return -1 
        return -1 
    mid = (low + high)//2 
    item = nums[mid] 
    if item == x: 
        return mid 
    elif x < item:           # Look in lower half 
        return recBinSearch(x, nums, low, mid-1) 
    else:                    # Look in upper half 
        return recBinSearch(x, nums, mid+1, high) 

n  We can then call the binary search with 
a generic search wrapping function: 
 
def search(x, nums): 
    return recBinSearch(x, nums, 0, len(nums)-1) 
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Recursion vs. Iteration 

n  There are similarities between iteration 
(looping) and recursion. 

n  In fact, anything that can be done with a loop 
can be done with a simple recursive function! 
Some programming languages use recursion 
exclusively. 

n  Some problems that are simple to solve with 
recursion are quite difficult to solve with 
loops. 
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Recursion vs. Iteration 
n  In the factorial and binary search problems, 

the looping and recursive solutions use 
roughly the same algorithms, and their 
efficiency is nearly the same. 

n  In the exponentiation problem, two different 
algorithms are used. The looping version 
takes linear time to complete, while the 
recursive version executes in log time. The 
difference between them is like the difference 
between a linear and binary search. 
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Recursion vs. Iteration 

n  So… will recursive solutions always be 
as efficient or more efficient than their 
iterative counterpart? 

n  The Fibonacci sequence is the sequence 
of numbers 1,1,2,3,5,8,… 
n  The sequence starts with two 1’s 
n  Successive numbers are calculated by 

finding the sum of the previous two 
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Recursion vs. Iteration 

n  Loop version: 
n  Let’s use two variables, curr and prev, to 

calculate the next number in the sequence. 
n  Once this is done, we set prev equal to 
curr, and set curr equal to the just-
calculated number. 

n  All we need to do is to put this into a loop 
to execute the right number of times! 
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Recursion vs. Iteration 
n  def loopfib(n): 

    # returns the nth Fibonacci number 
 
    curr = 1 
    prev = 1 
    for i in range(n-2): 
        curr, prev = curr+prev, curr 
    return curr 

n  Note the use of simultaneous assignment to 
calculate the new values of curr and prev. 

n  The loop executes only n-2 since the first two 
values have already been “determined”. 



Python Programming, 2/e 72 

Recursion vs. Iteration 
n  The Fibonacci sequence also has a recursive 

definition: 
 

n  This recursive definition can be directly 
turned into a recursive function! 

n  def fib(n): 
    if n < 3: 
        return 1 
    else: 
        return fib(n-1)+fib(n-2) 

1 if 3
( )

( 1) ( 2) otherwise
n

fib n
fib n fib n

<⎧
= ⎨ − + −⎩
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Recursion vs. Iteration 

n  This function obeys the rules that 
we’ve set out. 
n  The recursion is always based on smaller 

values. 
n  There is a non-recursive base case. 

n  So, this function will work great, won’t 
it? – Sort of… 
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Recursion vs. Iteration 

n  The recursive solution is extremely 
inefficient, since it performs many 
duplicate calculations! 
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Recursion vs. Iteration 

 

n  To calculate fib(6), fib(4)is calculated twice, 
fib(3)is calculated three times, fib(2)is 
calculated four times… For large numbers, this 
adds up! 
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Recursion vs. Iteration 
n  Recursion is another tool in your problem-

solving toolbox. 
n  Sometimes recursion provides a good solution 

because it is more elegant or efficient than a 
looping version. 

n  At other times, when both algorithms are 
quite similar, the edge goes to the looping 
solution on the basis of speed. 

n  Avoid the recursive solution if it is terribly 
inefficient, unless you can’t come up with an 
iterative solution (which sometimes happens!) 
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Sorting Algorithms 

n  The basic sorting problem is to take a 
list and rearrange it so that the values 
are in increasing (or nondecreasing) 
order. 
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Naive Sorting: Selection Sort 

n  To start out, pretend you’re the 
computer, and you’re given a shuffled 
stack of index cards, each with a 
number. How would you put the cards 
back in order? 
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Naive Sorting: Selection Sort 

n  One simple method is to look through the 
deck to find the smallest value and place 
that value at the front of the stack. 

n  Then go through, find the next smallest 
number in the remaining cards, place it 
behind the smallest card at the front. 

n  Rinse, lather, repeat, until the stack is in 
sorted order! 
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Naive Sorting: Selection Sort 

n  We already have an algorithm to find 
the smallest item in a list (Chapter 7). 
As you go through the list, keep track of 
the smallest one seen so far, updating it 
when you find a smaller one. 

n  This sorting algorithm is known as a 
selection sort. 
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Naive Sorting: Selection Sort 
n  The algorithm has a loop, and each time 

through the loop the smallest remaining 
element is selected and moved into its proper 
position. 
n  For n elements, we find the smallest value and put 

it in the 0th position. 
n  Then we find the smallest remaining value from 

position 1 – (n-1) and put it into position 1. 
n  The smallest value from position 2 – (n-1) goes in 

position 2. 
n  Etc. 
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Naive Sorting: Selection Sort 

n  When we place a value into its proper 
position, we need to be sure we don’t 
accidentally lose the value originally stored in 
that position. 

n  If the smallest item is in position 10, moving 
it into position 0 involves the assignment: 
nums[0] = nums[10] 

n  This wipes out the original value in nums[0]! 



Python Programming, 2/e 83 

Naive Sorting: Selection Sort 

n  We can use simultaneous assignment to 
swap the values between nums[0] and 
nums[10]: 
nums[0],nums[10] = nums[10],nums[0] 

n  Using these ideas, we can implement 
our algorithm, using variable bottom 
for the currently filled position, and mp 
is the location of the smallest remaining 
value. 
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Naive Sorting: Selection Sort 
   def selSort(nums): 

    # sort nums into ascending order 
 
    n = len(nums) 
 
    # For each position in the list (except the very last) 
 
    for bottom in range(n-1): 
        # find the smallest item in nums[bottom]..nums[n-1] 
 
        mp = bottom                 # bottom is smallest initially 
        for i in range(bottom+1, n):    # look at each position 
            if nums[i] < nums[mp]:      # this one is smaller 
                mp = i                  # remember its index 
 
        # swap smallest item to the bottom 
        nums[bottom], nums[mp] = nums[mp], nums[bottom] 
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Naive Sorting: Selection Sort 

n  Rather than remembering the minimum value 
scanned so far, we store its position in the list 
in the variable mp. 

n  New values are tested by comparing the item 
in position i with the item in position mp. 

n  bottom stops at the second to last item in 
the list. Why? Once all items up to the last 
are in order, the last item must be the 
largest! 
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Naive Sorting: Selection Sort 

n  The selection sort is easy to write and 
works well for moderate-sized lists, but 
is not terribly efficient. We’ll analyze 
this algorithm in a little bit. 
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Divide and Conquer: 
Merge Sort 

n  We’ve seen how divide and conquer 
works in other types of problems. How 
could we apply it to sorting? 

n  Say you and your friend have a deck of 
shuffled cards you’d like to sort. Each 
of you could take half the cards and 
sort them. Then all you’d need is a way 
to recombine the two sorted stacks! 
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Divide and Conquer: 
Merge Sort 

n  This process of combining two sorted 
lists into a single sorted list is called 
merging. 

n  Our merge sort algorithm looks like: 
split nums into two halves 
sort the first half 
sort the second half 
merge the two sorted halves back into nums 
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Divide and Conquer: 
Merge Sort 

n  Step 1: split nums into two halves 
n  Simple! Just use list slicing! 

n  Step 4: merge the two sorted halves 
back into nums 
n  This is simple if you think of how you’d do it 

yourself… 
n  You have two sorted stacks, each with the 

smallest value on top. Whichever of these two is 
smaller will be the first item in the list. 
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Divide and Conquer: 
Merge Sort 

n  Once the smaller value is removed, examine both 
top cards. Whichever is smaller will be the next 
item in the list. 

n  Continue this process of placing the smaller of the 
top two cards until one of the stacks runs out, in 
which case the list is finished with the cards from 
the remaining stack. 

n  In the following code, lst1 and lst2 are the 
smaller lists and lst3 is the larger list for the 
results. The length of lst3 must be equal to the 
sum of the lengths of lst1 and lst2. 
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Divide and Conquer: 
Merge Sort 
def merge(lst1, lst2, lst3): 
    # merge sorted lists lst1 and lst2 into lst3 
 
    # these indexes keep track of current position in each list 
    i1, i2, i3 = 0, 0, 0  # all start at the front 
    n1, n2 = len(lst1), len(lst2) 
 
    # Loop while both lst1 and lst2 have more items 
 
    while i1 < n1 and i2 < n2: 
        if lst1[i1] < lst2[i2]: # top of lst1 is smaller 
            lst3[i3] = lst1[i1] #  copy it into current spot in lst3 
            i1 = i1 + 1 
        else:                   # top of lst2 is smaller 
            lst3[i3] = lst2[i2] #  copy itinto current spot in lst3 
            i2 = i2 + 1 
        i3 = i3 + 1             # item added to lst3, update position 
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Divide and Conquer: 
Merge Sort 
 # Here either lst1 or lst2 is done. One of the following loops 
 # will execute to finish up the merge. 
 
    # Copy remaining items (if any) from lst1 
    while i1 < n1: 
        lst3[i3] = lst1[i1] 
        i1 = i1 + 1 
        i3 = i3 + 1 
 
    # Copy remaining items (if any) from lst2 
    while i2 < n2: 
        lst3[i3] = lst2[i2] 
        i2 = i2 + 1 
        i3 = i3 + 1 
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Divide and Conquer: 
Merge Sort 

n  We can slice a list in two, and we can 
merge these new sorted lists back into 
a single list. How are we going to sort 
the smaller lists? 

n  We are trying to sort a list, and the 
algorithm requires two smaller sorted 
lists… this sounds like a job for 
recursion! 
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Divide and Conquer: 
Merge Sort 

n  We need to find at least one base case 
that does not require a recursive call, 
and we also need to ensure that 
recursive calls are always made on 
smaller versions of the original problem. 

n  For the latter, we know this is true since 
each time we are working on halves of 
the previous list. 
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Divide and Conquer: 
Merge Sort 

n  Eventually, the lists will be halved into lists 
with a single element each. What do we 
know about a list with a single item? 

n  It’s already sorted!! We have our base 
case! 

n  When the length of the list is less than 2, 
we do nothing. 

n  We update the mergeSort algorithm to 
make it properly recursive… 



Python Programming, 2/e 96 

Divide and Conquer: 
Merge Sort 
if len(nums) > 1: 

    split nums into two halves 
    mergeSort the first half 

    mergeSort the seoncd half 

    mergeSort the second half 

    merge the two sorted halves back into nums 
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Divide and Conquer: 
Merge Sort 
def mergeSort(nums): 
    # Put items of nums into ascending order 
    n = len(nums) 
    # Do nothing if nums contains 0 or 1 items 
    if n > 1: 
        # split the two sublists 
        m = n/2 
        nums1, nums2 = nums[:m], nums[m:] 
        # recursively sort each piece 
        mergeSort(nums1) 
        mergeSort(nums2) 
        # merge the sorted pieces back into original list 
        merge(nums1, nums2, nums) 
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Divide and Conquer: 
Merge Sort 

n  Recursion is closely related to the idea 
of mathematical induction, and it 
requires practice before it becomes 
comfortable. 

n  Follow the rules and make sure the 
recursive chain of calls reaches a base 
case, and your algorithms will work! 
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Comparing Sorts 

n  We now have two sorting algorithms. 
Which one should we use? 

n  The difficulty of sorting a list depends 
on the size of the list. We need to figure 
out how many steps each of our sorting 
algorithms requires as a function of the 
size of the list to be sorted. 



Python Programming, 2/e 100 

Comparing Sorts 
n  Let’s start with selection sort. 
n  In this algorithm we start by finding the 

smallest item, then finding the smallest of the 
remaining items, and so on. 

n  Suppose we start with a list of size n. To find 
the smallest element, the algorithm inspects 
all n items. The next time through the loop, it 
inspects the remaining n-1 items. The total 
number of iterations is: 
n + (n-1) + (n-2) + (n-3) + … + 1 
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Comparing Sorts 

n  The time required by selection sort to 
sort a list of n items is proportional to 
the sum of the first n whole numbers, 
or      . 

n  This formula contains an n2 term, 
meaning that the number of steps in 
the algorithm is proportional to the 
square of the size of the list. 

( )1
2

n n +
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Comparing Sorts 

n  If the size of a list doubles, it will take 
four times as long to sort. Tripling the 
size will take nine times longer to sort! 

n  Computer scientists call this a quadratic 
or n2 algorithm. 
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Comparing Sorts 

n  In the case of the merge sort, a list is 
divided into two pieces and each piece 
is sorted before merging them back 
together. The real place where the 
sorting occurs is in the merge function. 
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Comparing Sorts 

n  This diagram shows how [3,1,4,1,5,9,2,6] 
is sorted. 

n  Starting at the bottom, we have to copy 
the n values into the second level. 
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Comparing Sorts 

n  From the second to third levels the n values 
need to be copied again. 

n  Each level of merging involves copying n 
values. The only remaining question is how 
many levels are there? 



Python Programming, 2/e 106 

Comparing Sorts 

n  We know from the analysis of binary 
search that this is just log2n. 

n  Therefore, the total work required to 
sort n items is nlog2n. 

n  Computer scientists call this an n log n 
algorithm. 
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Comparing Sorts 

n  So, which is going to be better, the n2 
selection sort, or the n logn merge sort? 

n  If the input size is small, the selection sort 
might be a little faster because the code is 
simpler and there is less overhead. 

n  What happens as n gets large? We saw in our 
discussion of binary search that the log 
function grows very slowly, so nlogn will grow 
much slower than n2. 
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Comparing Sorts 
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Hard Problems 

n  Using divide-and-conquer we could 
design efficient algorithms for searching 
and sorting problems. 

n  Divide and conquer and recursion are 
very powerful techniques for algorithm 
design. 

n  Not all problems have efficient 
solutions! 
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Towers of Hanoi 

n  One elegant application of recursion is to the 
Towers of Hanoi or Towers of Brahma puzzle 
attributed to Édouard Lucas. 

n  There are three posts and sixty-four 
concentric disks shaped like a pyramid. 

n  The goal is to move the disks from one post 
to another, following these three rules: 
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Towers of Hanoi 
n  Only one disk may be moved at a time. 
n  A disk may not be “set aside”. It may only be 

stacked on one of the three posts. 
n  A larger disk may never be placed on top of a 

smaller one. 
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Towers of Hanoi 

n  If we label the posts as A, B, and C, we could 
express an algorithm to move a pile of disks from A 
to C, using B as temporary storage, as: 
Move disk from A to C 
Move disk from A to B 
Move disk from C to B 
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Towers of Hanoi 

n  Let’s consider some easy cases – 
n  1 disk 

Move disk from A to C 
n  2 disks 

Move disk from A to B 
Move disk from A to C 
Move disk from B to C 
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Towers of Hanoi 

n  3 disks 
To move the largest disk to C, we first 
need to move the two smaller disks out of 
the way. These two smaller disks form a 
pyramid of size 2, which we know how to 
solve. 
Move a tower of two from A to B 
Move one disk from A to C 
Move a tower of two from B to C 
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Towers of Hanoi 
n  Algorithm: move n-disk tower from source to 

destination via resting place 
 
move n-1 disk tower from source to resting place 
move 1 disk tower from source to destination 
move n-1 disk tower from resting place to 
destination 

n  What should the base case be? 
Eventually we will be moving a tower of 
size 1, which can be moved directly 
without needing a recursive call. 
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Towers of Hanoi 

n  In moveTower, n is the size of the tower 
(integer), and source, dest, and temp are 
the three posts, represented by “A”, “B”, and 
“C”. 
 

n  def moveTower(n, source, dest, temp): 
    if n == 1: 
        print("Move disk from", source, "to", dest+".") 
    else: 
        moveTower(n-1, source, temp, dest) 
        moveTower(1, source, dest, temp) 
        moveTower(n-1, temp, dest, source) 
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Towers of Hanoi 

n  To get things started, we need to supply 
parameters for the four parameters: 
def hanoi(n): 
    moveTower(n, "A", "C", "B") 
 

n  >>> hanoi(3) 
Move disk from A to C. 
Move disk from A to B. 
Move disk from C to B. 
Move disk from A to C. 
Move disk from B to A. 
Move disk from B to C. 
Move disk from A to C. 
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Towers of Hanoi 

n  Why is this a “hard 
problem”? 

n  How many steps in 
our program are 
required to move a 
tower of size n? 

Number of 
Disks 

Steps in 
Solution 

1 1 

2 3 

3 7 

4 15 

5 31 
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Towers of Hanoi 
n  To solve a puzzle of size n will require 2n-1 

steps. 
n  Computer scientists refer to this as an 

exponential time algorithm. 
n  Exponential algorithms grow very fast. 
n  For 64 disks, moving one a second, round the 

clock, would require 580 billion years to 
complete. The current age of the universe is 
estimated to be about 15 billion years. 
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Towers of Hanoi 

n  Even though the algorithm for Towers of 
Hanoi is easy to express, it belongs to a 
class of problems known as intractable 
problems – those that require too many 
computing resources (either time or 
memory) to be solved except for the 
simplest of cases. 

n  There are problems that are even harder 
than the class of intractable problems. 
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The Halting Problem 

n  Let’s say you want to write a program that 
looks at other programs to determine 
whether they have an infinite loop or not. 

n  We’ll assume that we need to also know the 
input to be given to the program in order to 
make sure it’s not some combination of input 
and the program itself that causes it to 
infinitely loop. 
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The Halting Problem 
n  Program Specification: 

n  Program: Halting Analyzer 
n  Inputs: A Python program file. The input for the 

program. 
n  Outputs: “OK” if the program will eventually stop. 
“FAULTY” if the program has an infinite loop. 

n  You’ve seen programs that look at programs 
before – like the Python interpreter! 

n  The program and its inputs can both be 
represented by strings. 
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The Halting Problem 

n  There is no possible algorithm that can 
meet this specification! 

n  This is different than saying no one’s 
been able to write such a program… we 
can prove that this is the case using a 
mathematical technique known as proof 
by contradiction. 



Python Programming, 2/e 124 

The Halting Problem 

n  To do a proof by contradiction, we 
assume the opposite of what we’re 
trying to prove, and show this leads to 
a contradiction. 

n  First, let’s assume there is an algorithm 
that can determine if a program 
terminates for a particular set of inputs. 
If it does, we could put it in a function: 
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The Halting Problem 
n  def terminates(program, inputData): 

    # program and inputData are both strings 
    # Returns true if program would halt when run 
    # with inputData as its input 

n  If we had a function like this, we could write 
the following program: 

n  # turing.py 
 
def terminates(program, inputData): 
    # program and inputData are both strings 
    # Returns true if program would halt when run 
    # with inputData as its input 
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The Halting Problem 
def main(): 
    # Read a program from standard input 
    lines = [] 
    print("Type in a program (type 'done' to quit).") 
    line = input("") 
    while line != "done": 
        lines.append(line) 
        line = input("") 
    testProg = "\n".join(lines) 
 
    # If program halts on itself as input, go into 
    # an inifinite loop 
    if terminates(testProg, testProg): 
        while True: 
            pass        # a pass statement does nothing 
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The Halting Problem 

n  The program is called “turing.py” in 
honor of Alan Turing, the British 
mathematician who is considered to be 
the “father of Computer Science”. 

n  Let’s look at the program step-by-step 
to see what it does… 
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The Halting Problem 

n  turing.py first reads in a program typed by 
the user, using a sentinel loop. 

n  The join method then concatenates the 
accumulated lines together, putting a newline 
(\n) character between them. 

n  This creates a multi-line string representing 
the program that was entered. 



Python Programming, 2/e 129 

The Halting Problem 

n  turing.py next uses this program as not 
only the program to test, but also as the 
input to test. 

n  In other words, we’re seeing if the program 
you typed in terminates when given itself as 
input. 

n  If the input program terminates, the turing 
program will go into an infinite loop. 
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The Halting Problem 

n  This was all just a set-up for the big 
question: What happens when we run 
turing.py, and use turing.py as 
the input? 

n  Does turing.py halt when given itself 
as input? 
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The Halting Problem 

n  In the terminates function, turing.py will 
be evaluated to see if it halts or not. 

n  We have two possible cases: 
n  turing.py halts when given itself as input 

n  Terminates returns true 
n  So, turing.py goes into an infinite loop 
n  Therefore turing.py doesn’t halt, a 

contradiction 
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The Halting Problem 
n  Turing.py does not halt 

n  terminates returns false 
n  When terminates returns false, the program 

quits 
n  When the program quits, it has halted, a 

contradiction 

n  The existence of the function terminates 
would lead to a logical impossibility, so we 
can conclude that no such function exists.  
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Conclusions 

n  Computer Science is more than 
programming! 

n  The most important computer for any 
computing professional is between their 
ears. 

n  You should become a computer 
scientist! 


