
Python Programming, 2/e 1

Python Programming:
An Introduction to
Computer Science

Chapter 13
Algorithm Design and Recursion

Python Programming, 2/e 2

Objectives

n  To understand the basic techniques for
analyzing the efficiency of algorithms.

n  To know what searching is and understand
the algorithms for linear and binary
search.

n  To understand the basic principles of
recursive definitions and functions and be
able to write simple recursive functions.

Python Programming, 2/e 3

Objectives

n  To understand sorting in depth and
know the algorithms for selection sort
and merge sort.

n  To appreciate how the analysis of
algorithms can demonstrate that some
problems are intractable and others are
unsolvable.

Python Programming, 2/e 4

Searching

n  Searching is the process of looking for a
particular value in a collection.

n  For example, a program that maintains
a membership list for a club might need
to look up information for a particular
member – this involves some sort of
search process.

Python Programming, 2/e 5

A simple Searching Problem

n  Here is the specification of a simple
searching function:

def search(x, nums):
 # nums is a list of numbers and x is a number
 # Returns the position in the list where x
occurs

 # or -1 if x is not in the list.

n  Here are some sample interactions:
>>> search(4, [3, 1, 4, 2, 5])
2
>>> search(7, [3, 1, 4, 2, 5])
-1

Python Programming, 2/e 6

A Simple Searching Problem

n  In the first example, the function
returns the index where 4 appears in
the list.

n  In the second example, the return value
-1 indicates that 7 is not in the list.

n  Python includes a number of built-in
search-related methods!

Python Programming, 2/e 7

A Simple Searching Problem

n  We can test to see if a value appears in
a sequence using in.

if x in nums:
 # do something

n  If we want to know the position of x in
a list, the index method can be used.
>>> nums = [3, 1, 4, 2, 5]
>>> nums.index(4)
2

Python Programming, 2/e 8

A Simple Searching Problem

n  The only difference between our
search function and index is that
index raises an exception if the target
value does not appear in the list.

n  We could implement search using
index by simply catching the exception
and returning -1 for that case.

Python Programming, 2/e 9

A Simple Searching Problem
n  def search(x, nums):

 try:
 return nums.index(x)
 except:
 return -1

n  Sure, this will work, but we are really
interested in the algorithm used to
actually search the list in Python!

Python Programming, 2/e 10

Strategy 1: Linear Search
n  Pretend you’re the computer, and you were

given a page full of randomly ordered
numbers and were asked whether 13 was in
the list.

n  How would you do it?
n  Would you start at the top of the list,

scanning downward, comparing each number
to 13? If you saw it, you could tell me it was
in the list. If you had scanned the whole list
and not seen it, you could tell me it wasn’t
there.

Python Programming, 2/e 11

Strategy 1: Linear Search

n  This strategy is called a linear search,
where you search through the list of
items one by one until the target value
is found.

n  def search(x, nums):
 for i in range(len(nums)):
 if nums[i] == x: # item found, return the index value
 return i
 return -1 # loop finished, item was not in list

n  This algorithm wasn’t hard to develop,
and works well for modest-sized lists.

Python Programming, 2/e 12

Strategy 1: Linear Search

n  The Python in and index operations
both implement linear searching
algorithms.

n  If the collection of data is very large, it
makes sense to organize the data
somehow so that each data value
doesn’t need to be examined.

Python Programming, 2/e 13

Strategy 1: Linear Search

n  If the data is sorted in ascending order
(lowest to highest), we can skip checking
some of the data.

n  As soon as a value is encountered that is
greater than the target value, the linear
search can be stopped without looking at the
rest of the data.

n  On average, this will save us about half the
work.

Python Programming, 2/e 14

Strategy 2: Binary Search

n  If the data is sorted, there is an even better
searching strategy – one you probably
already know!

n  Have you ever played the number guessing
game, where I pick a number between 1 and
100 and you try to guess it? Each time you
guess, I’ll tell you whether your guess is
correct, too high, or too low. What strategy
do you use?

Python Programming, 2/e 15

Strategy 2: Binary Search

n  Young children might simply guess
numbers at random.

n  Older children may be more systematic,
using a linear search of 1, 2, 3, 4, …
until the value is found.

n  Most adults will first guess 50. If told
the value is higher, it is in the range
51-100. The next logical guess is 75.

Python Programming, 2/e 16

Strategy 2: Binary Search

n  Each time we guess the middle of the
remaining numbers to try to narrow
down the range.

n  This strategy is called binary search.
n  Binary means two, and at each step we

are diving the remaining group of
numbers into two parts.

Python Programming, 2/e 17

Strategy 2: Binary Search

n  We can use the same approach in our
binary search algorithm! We can use two
variables to keep track of the endpoints of
the range in the sorted list where the
number could be.

n  Since the target could be anywhere in the
list, initially low is set to the first location
in the list, and high is set to the last.

Python Programming, 2/e 18

Strategy 2: Binary Search

n  The heart of the algorithm is a loop that looks
at the middle element of the range,
comparing it to the value x.

n  If x is smaller than the middle item, high is
moved so that the search is confined to the
lower half.

n  If x is larger than the middle item, low is
moved to narrow the search to the upper
half.

Python Programming, 2/e 19

Strategy 2: Binary Search

n  The loop terminates when either
n  x is found
n  There are no more places to look

(low > high)

Python Programming, 2/e 20

Strategy 2: Binary Search
def search(x, nums):
 low = 0
 high = len(nums) - 1
 while low <= high: # There is still a range to search
 mid = (low + high)//2 # Position of middle item
 item = nums[mid]
 if x == item: # Found it! Return the index
 return mid
 elif x < item: # x is in lower half of range
 high = mid - 1 # move top marker down
 else: # x is in upper half of range
 low = mid + 1 # move bottom marker up
 return -1 # No range left to search,
 # x is not there

Python Programming, 2/e 21

Comparing Algorithms
n  Which search algorithm is better, linear or

binary?
n  The linear search is easier to understand and

implement
n  The binary search is more efficient since it doesn’t

need to look at each element in the list
n  Intuitively, we might expect the linear search

to work better for small lists, and binary
search for longer lists. But how can we be
sure?

Python Programming, 2/e 22

Comparing Algorithms

n  One way to conduct the test would be to
code up the algorithms and try them on
varying sized lists, noting the runtime.
n  Linear search is generally faster for lists of length

10 or less
n  There was little difference for lists of 10-1000
n  Binary search is best for 1000+ (for one million list

elements, binary search averaged .0003 seconds
while linear search averaged 2.5 second)

Python Programming, 2/e 23

Comparing Algorithms
n  While interesting, can we guarantee that

these empirical results are not dependent on
the type of computer they were conducted
on, the amount of memory in the computer,
the speed of the computer, etc.?

n  We could abstractly reason about the
algorithms to determine how efficient they
are. We can assume that the algorithm with
the fewest number of “steps” is more
efficient.

Python Programming, 2/e 24

Comparing Algorithms

n  How do we count the number of
“steps”?

n  Computer scientists attack these
problems by analyzing the number of
steps that an algorithm will take relative
to the size or difficulty of the specific
problem instance being solved.

Python Programming, 2/e 25

Comparing Algorithms

n  For searching, the difficulty is determined by
the size of the collection – it takes more steps
to find a number in a collection of a million
numbers than it does in a collection of 10
numbers.

n  How many steps are needed to find a value in
a list of size n?

n  In particular, what happens as n gets very
large?

Python Programming, 2/e 26

Comparing Algorithms
n  Let’s consider linear search.

n  For a list of 10 items, the most work we might have to
do is to look at each item in turn – looping at most 10
times.

n  For a list twice as large, we would loop at most 20
times.

n  For a list three times as large, we would loop at most
30 times!

n  The amount of time required is linearly
related to the size of the list, n. This is what
computer scientists call a linear time
algorithm.

Python Programming, 2/e 27

Comparing Algorithms

n  Now, let’s consider binary search.
n  Suppose the list has 16 items. Each time through

the loop, half the items are removed. After one
loop, 8 items remain.

n  After two loops, 4 items remain.
n  After three loops, 2 items remain
n  After four loops, 1 item remains.

n  If a binary search loops i times, it can find a
single value in a list of size 2i.

Python Programming, 2/e 28

Comparing Algorithms

n  To determine how many items are
examined in a list of size n, we need to
solve for i, or .

n  Binary search is an example of a log
time algorithm – the amount of time it
takes to solve one of these problems
grows as the log of the problem size.

2in = 2logi n=

Python Programming, 2/e 29

Comparing Algorithms
n  This logarithmic property can be very

powerful!
n  Suppose you have the New York City phone

book with 12 million names. You could walk
up to a New Yorker and, assuming they are
listed in the phone book, make them this
proposition: “I’m going to try guessing your
name. Each time I guess a name, you tell me
if your name comes alphabetically before or
after the name I guess.” How many guesses
will you need?

Python Programming, 2/e 30

Comparing Algorithms

n  Our analysis shows us the answer to
this question is .

n  We can guess the name of the New
Yorker in 24 guesses! By comparison,
using the linear search we would need
to make, on average, 6,000,000
guesses!

2log 12000000

Python Programming, 2/e 31

Comparing Algorithms

n  Earlier, we mentioned that Python uses
linear search in its built-in searching
methods. We doesn’t it use binary
search?
n  Binary search requires the data to be

sorted
n  If the data is unsorted, it must be sorted

first!

Python Programming, 2/e 32

Recursive Problem-Solving

n  The basic idea between the binary
search algorithm was to successfully
divide the problem in half.

n  This technique is known as a divide and
conquer approach.

n  Divide and conquer divides the original
problem into subproblems that are
smaller versions of the original problem.

Python Programming, 2/e 33

Recursive Problem-Solving

n  In the binary search, the initial range is
the entire list. We look at the middle
element… if it is the target, we’re done.
Otherwise, we continue by performing a
binary search on either the top half or
bottom half of the list.

Python Programming, 2/e 34

Recursive Problem-Solving
Algorithm: binarySearch – search for x in nums[low]…nums[high]

mid = (low + high)//2

if low > high
 x is not in nums

elsif x < nums[mid]
 perform binary search for x in nums[low]…nums[mid-1]

else

 perform binary search for x in nums[mid+1]…nums[high]

n  This version has no loop, and seems to
refer to itself! What’s going on??

Python Programming, 2/e 35

Recursive Definitions

n  A description of something that refers
to itself is called a recursive definition.

n  In the last example, the binary search
algorithm uses its own description – a
“call” to binary search “recurs” inside
of the definition – hence the label
“recursive definition.”

Python Programming, 2/e 36

Recursive Definitions

n  Have you had a teacher tell you that
you can’t use a word in its own
definition? This is a circular definition.

n  In mathematics, recursion is frequently
used. The most common example is the
factorial:

n  For example, 5! = 5(4)(3)(2)(1), or
5! = 5(4!)

! (1)(2)...(1)n n n n= − −

Python Programming, 2/e 37

Recursive Definitions

n  In other words,

n  Or

n  This definition says that 0! is 1, while
the factorial of any other number is that
number times the factorial of one less
than that number.

! (1)!n n n= −

1 if 0
!

(1)! otherwise
n

n
n n

=⎧
= ⎨ −⎩

Python Programming, 2/e 38

Recursive Definitions

n  Our definition is recursive, but definitely
not circular. Consider 4!
n  4! = 4(4-1)! = 4(3!)
n  What is 3!? We apply the definition again

4! = 4(3!) = 4[3(3-1)!] = 4(3)(2!)
n  And so on…

4! = 4(3!) = 4(3)(2!) = 4(3)(2)(1!) = 4(3)
(2)(1)(0!) = 4(3)(2)(1)(1) = 24

Python Programming, 2/e 39

Recursive Definitions

n  Factorial is not circular because we
eventually get to 0!, whose definition
does not rely on the definition of
factorial and is just 1. This is called a
base case for the recursion.

n  When the base case is encountered, we
get a closed expression that can be
directly computed.

Python Programming, 2/e 40

Recursive Definitions
n  All good recursive definitions have these two

key characteristics:
n  There are one or more base cases for which no

recursion is applied.
n  All chains of recursion eventually end up at one of

the base cases.
n  The simplest way for these two conditions to

occur is for each recursion to act on a smaller
version of the original problem. A very small
version of the original problem that can be
solved without recursion becomes the base
case.

Python Programming, 2/e 41

Recursive Functions

n  We’ve seen previously that factorial can
be calculated using a loop accumulator.

n  If factorial is written as a separate
function:
def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Python Programming, 2/e 42

Recursive Functions

n  We’ve written a function that calls
itself, a recursive function.

n  The function first checks to see if we’re
at the base case (n==0). If so, return 1.
Otherwise, return the result of
multiplying n by the factorial of n-1,
fact(n-1).

Python Programming, 2/e 43

Recursive Functions
>>> fact(4)
24
>>> fact(10)
3628800
>>> fact(100)
93326215443944152681699238856266700490715968264381621468592963

89521759999322991560894146397615651828625369792082722375825
1185210916864000000000000000000000000L

>>>

n  Remember that each call to a function
starts that function anew, with its own
copies of local variables and
parameters.

Python Programming, 2/e 44

Recursive Functions

Python Programming, 2/e 45

Example: String Reversal

n  Python lists have a built-in method that
can be used to reverse the list. What if
you wanted to reverse a string?

n  If you wanted to program this yourself,
one way to do it would be to convert
the string into a list of characters,
reverse the list, and then convert it
back into a string.

Python Programming, 2/e 46

Example: String Reversal

n  Using recursion, we can calculate the
reverse of a string without the
intermediate list step.

n  Think of a string as a recursive object:
n  Divide it up into a first character and “all

the rest”
n  Reverse the “rest” and append the first

character to the end of it

Python Programming, 2/e 47

Example: String Reversal
n  def reverse(s):

 return reverse(s[1:]) + s[0]

n  The slice s[1:] returns all but the first
character of the string.

n  We reverse this slice and then
concatenate the first character (s[0])
onto the end.

Python Programming, 2/e 48

Example: String Reversal
n  >>> reverse("Hello")

Traceback (most recent call last):
 File "<pyshell#6>", line 1, in -toplevel-
 reverse("Hello")
 File "C:/Program Files/Python 2.3.3/z.py", line 8, in reverse
 return reverse(s[1:]) + s[0]
 File "C:/Program Files/Python 2.3.3/z.py", line 8, in reverse
 return reverse(s[1:]) + s[0]
…
 File "C:/Program Files/Python 2.3.3/z.py", line 8, in reverse
 return reverse(s[1:]) + s[0]
RuntimeError: maximum recursion depth exceeded

n  What happened? There were 1000 lines
of errors!

Python Programming, 2/e 49

Example: String Reversal

n  Remember: To build a correct recursive
function, we need a base case that
doesn’t use recursion.

n  We forgot to include a base case, so
our program is an infinite recursion.
Each call to reverse contains another
call to reverse, so none of them
return.

Python Programming, 2/e 50

Example: String Reversal

n  Each time a function is called it takes some
memory. Python stops it at 1000 calls, the
default “maximum recursion depth.”

n  What should we use for our base case?
n  Following our algorithm, we know we will

eventually try to reverse the empty string.
Since the empty string is its own reverse, we
can use it as the base case.

Python Programming, 2/e 51

Example: String Reversal
n  def reverse(s):

 if s == "":
 return s
 else:
 return reverse(s[1:]) + s[0]

n  >>> reverse("Hello")
'olleH'

Python Programming, 2/e 52

Example: Anagrams

n  An anagram is formed by rearranging
the letters of a word.

n  Anagram formation is a special case of
generating all permutations
(rearrangements) of a sequence, a
problem that is seen frequently in
mathematics and computer science.

Python Programming, 2/e 53

Example: Anagrams

n  Let’s apply the same approach from
the previous example.
n  Slice the first character off the string.
n  Place the first character in all possible

locations within the anagrams formed from
the “rest” of the original string.

Python Programming, 2/e 54

Example: Anagrams

n  Suppose the original string is “abc”. Stripping
off the “a” leaves us with “bc”.

n  Generating all anagrams of “bc” gives us
“bc” and “cb”.

n  To form the anagram of the original string,
we place “a” in all possible locations within
these two smaller anagrams: [“abc”, “bac”,
“bca”, “acb”, “cab”, “cba”]

Python Programming, 2/e 55

Example: Anagrams

n  As in the previous example, we can use
the empty string as our base case.

n  def anagrams(s):
 if s == "":
 return [s]
 else:
 ans = []
 for w in anagrams(s[1:]):
 for pos in range(len(w)+1):
 ans.append(w[:pos]+s[0]+w[pos:])
 return ans

Python Programming, 2/e 56

Example: Anagrams
n  A list is used to accumulate results.
n  The outer for loop iterates through each

anagram of the tail of s.
n  The inner loop goes through each position in

the anagram and creates a new string with
the original first character inserted into that
position.

n  The inner loop goes up to len(w)+1 so the
new character can be added at the end of the
anagram.

Python Programming, 2/e 57

Example: Anagrams

n  w[:pos]+s[0]+w[pos:]
n  w[:pos] gives the part of w up to, but not

including, pos.
n  w[pos:] gives everything from pos to

the end.
n  Inserting s[0] between them effectively

inserts it into w at pos.

Python Programming, 2/e 58

Example: Anagrams

n  The number of anagrams of a word is
the factorial of the length of the word.

n  >>> anagrams("abc")
['abc', 'bac', 'bca', 'acb', 'cab', 'cba']

Python Programming, 2/e 59

Example: Fast Exponentiation

n  One way to compute an for an integer n
is to multiply a by itself n times.

n  This can be done with a simple
accumulator loop:

def loopPower(a, n):
 ans = 1
 for i in range(n):
 ans = ans * a
 return ans

Python Programming, 2/e 60

Example: Fast Exponentiation
n  We can also solve this problem using divide

and conquer.
n  Using the laws of exponents, we know that 28

= 24(24). If we know 24, we can calculate 28
using one multiplication.

n  What’s 24? 24 = 22(22), and 22 = 2(2).
n  2(2) = 4, 4(4) = 16, 16(16) = 256 = 28
n  We’ve calculated 28 using only three

multiplications!

Python Programming, 2/e 61

Example: Fast Exponentiation

n  We can take advantage of the fact that
an = an//2(an//2)

n  This algorithm only works when n is
even. How can we extend it to work
when n is odd?

n  29 = 24(24)(21)

Python Programming, 2/e 62

Example: Fast Exponentiation

n  This method relies on integer division (if
n is 9, then n//2 = 4).

n  To express this algorithm recursively,
we need a suitable base case.

n  If we keep using smaller and smaller
values for n, n will eventually be equal
to 0 (1//2 = 0), and a0 = 1 for any
value except a = 0.

Python Programming, 2/e 63

Example: Fast Exponentiation
n  def recPower(a, n):

 # raises a to the int power n
 if n == 0:
 return 1
 else:
 factor = recPower(a, n//2)
 if n%2 == 0: # n is even
 return factor * factor
 else: # n is odd
 return factor * factor * a

n  Here, a temporary variable called factor
is introduced so that we don’t need to
calculate an//2 more than once, simply
for efficiency.

Python Programming, 2/e 64

Example: Binary Search

n  Now that you’ve seen some recursion
examples, you’re ready to look at doing
binary searches recursively.

n  Remember: we look at the middle value first,
then we either search the lower half or upper
half of the array.

n  The base cases are when we can stop
searching,namely, when the target is found
or when we’ve run out of places to look.

Python Programming, 2/e 65

Example: Binary Search

n  The recursive calls will cut the search in
half each time by specifying the range
of locations that are “still in play”, i.e.
have not been searched and may
contain the target value.

n  Each invocation of the search routine
will search the list between the given
low and high parameters.

Python Programming, 2/e 66

Example: Binary Search
n  def recBinSearch(x, nums, low, high):

 if low > high: # No place left to look, return -1
 return -1
 mid = (low + high)//2
 item = nums[mid]
 if item == x:
 return mid
 elif x < item: # Look in lower half
 return recBinSearch(x, nums, low, mid-1)
 else: # Look in upper half
 return recBinSearch(x, nums, mid+1, high)

n  We can then call the binary search with
a generic search wrapping function:

def search(x, nums):
 return recBinSearch(x, nums, 0, len(nums)-1)

Python Programming, 2/e 67

Recursion vs. Iteration

n  There are similarities between iteration
(looping) and recursion.

n  In fact, anything that can be done with a loop
can be done with a simple recursive function!
Some programming languages use recursion
exclusively.

n  Some problems that are simple to solve with
recursion are quite difficult to solve with
loops.

Python Programming, 2/e 68

Recursion vs. Iteration
n  In the factorial and binary search problems,

the looping and recursive solutions use
roughly the same algorithms, and their
efficiency is nearly the same.

n  In the exponentiation problem, two different
algorithms are used. The looping version
takes linear time to complete, while the
recursive version executes in log time. The
difference between them is like the difference
between a linear and binary search.

Python Programming, 2/e 69

Recursion vs. Iteration

n  So… will recursive solutions always be
as efficient or more efficient than their
iterative counterpart?

n  The Fibonacci sequence is the sequence
of numbers 1,1,2,3,5,8,…
n  The sequence starts with two 1’s
n  Successive numbers are calculated by

finding the sum of the previous two

Python Programming, 2/e 70

Recursion vs. Iteration

n  Loop version:
n  Let’s use two variables, curr and prev, to

calculate the next number in the sequence.
n  Once this is done, we set prev equal to
curr, and set curr equal to the just-
calculated number.

n  All we need to do is to put this into a loop
to execute the right number of times!

Python Programming, 2/e 71

Recursion vs. Iteration
n  def loopfib(n):

 # returns the nth Fibonacci number

 curr = 1
 prev = 1
 for i in range(n-2):
 curr, prev = curr+prev, curr
 return curr

n  Note the use of simultaneous assignment to
calculate the new values of curr and prev.

n  The loop executes only n-2 since the first two
values have already been “determined”.

Python Programming, 2/e 72

Recursion vs. Iteration
n  The Fibonacci sequence also has a recursive

definition:

n  This recursive definition can be directly
turned into a recursive function!

n  def fib(n):
 if n < 3:
 return 1
 else:
 return fib(n-1)+fib(n-2)

1 if 3
()

(1) (2) otherwise
n

fib n
fib n fib n

<⎧
= ⎨ − + −⎩

Python Programming, 2/e 73

Recursion vs. Iteration

n  This function obeys the rules that
we’ve set out.
n  The recursion is always based on smaller

values.
n  There is a non-recursive base case.

n  So, this function will work great, won’t
it? – Sort of…

Python Programming, 2/e 74

Recursion vs. Iteration

n  The recursive solution is extremely
inefficient, since it performs many
duplicate calculations!

Python Programming, 2/e 75

Recursion vs. Iteration

n  To calculate fib(6), fib(4)is calculated twice,
fib(3)is calculated three times, fib(2)is
calculated four times… For large numbers, this
adds up!

Python Programming, 2/e 76

Recursion vs. Iteration
n  Recursion is another tool in your problem-

solving toolbox.
n  Sometimes recursion provides a good solution

because it is more elegant or efficient than a
looping version.

n  At other times, when both algorithms are
quite similar, the edge goes to the looping
solution on the basis of speed.

n  Avoid the recursive solution if it is terribly
inefficient, unless you can’t come up with an
iterative solution (which sometimes happens!)

Python Programming, 2/e 77

Sorting Algorithms

n  The basic sorting problem is to take a
list and rearrange it so that the values
are in increasing (or nondecreasing)
order.

Python Programming, 2/e 78

Naive Sorting: Selection Sort

n  To start out, pretend you’re the
computer, and you’re given a shuffled
stack of index cards, each with a
number. How would you put the cards
back in order?

Python Programming, 2/e 79

Naive Sorting: Selection Sort

n  One simple method is to look through the
deck to find the smallest value and place
that value at the front of the stack.

n  Then go through, find the next smallest
number in the remaining cards, place it
behind the smallest card at the front.

n  Rinse, lather, repeat, until the stack is in
sorted order!

Python Programming, 2/e 80

Naive Sorting: Selection Sort

n  We already have an algorithm to find
the smallest item in a list (Chapter 7).
As you go through the list, keep track of
the smallest one seen so far, updating it
when you find a smaller one.

n  This sorting algorithm is known as a
selection sort.

Python Programming, 2/e 81

Naive Sorting: Selection Sort
n  The algorithm has a loop, and each time

through the loop the smallest remaining
element is selected and moved into its proper
position.
n  For n elements, we find the smallest value and put

it in the 0th position.
n  Then we find the smallest remaining value from

position 1 – (n-1) and put it into position 1.
n  The smallest value from position 2 – (n-1) goes in

position 2.
n  Etc.

Python Programming, 2/e 82

Naive Sorting: Selection Sort

n  When we place a value into its proper
position, we need to be sure we don’t
accidentally lose the value originally stored in
that position.

n  If the smallest item is in position 10, moving
it into position 0 involves the assignment:
nums[0] = nums[10]

n  This wipes out the original value in nums[0]!

Python Programming, 2/e 83

Naive Sorting: Selection Sort

n  We can use simultaneous assignment to
swap the values between nums[0] and
nums[10]:
nums[0],nums[10] = nums[10],nums[0]

n  Using these ideas, we can implement
our algorithm, using variable bottom
for the currently filled position, and mp
is the location of the smallest remaining
value.

Python Programming, 2/e 84

Naive Sorting: Selection Sort
 def selSort(nums):

 # sort nums into ascending order

 n = len(nums)

 # For each position in the list (except the very last)

 for bottom in range(n-1):
 # find the smallest item in nums[bottom]..nums[n-1]

 mp = bottom # bottom is smallest initially
 for i in range(bottom+1, n): # look at each position
 if nums[i] < nums[mp]: # this one is smaller
 mp = i # remember its index

 # swap smallest item to the bottom
 nums[bottom], nums[mp] = nums[mp], nums[bottom]

Python Programming, 2/e 85

Naive Sorting: Selection Sort

n  Rather than remembering the minimum value
scanned so far, we store its position in the list
in the variable mp.

n  New values are tested by comparing the item
in position i with the item in position mp.

n  bottom stops at the second to last item in
the list. Why? Once all items up to the last
are in order, the last item must be the
largest!

Python Programming, 2/e 86

Naive Sorting: Selection Sort

n  The selection sort is easy to write and
works well for moderate-sized lists, but
is not terribly efficient. We’ll analyze
this algorithm in a little bit.

Python Programming, 2/e 87

Divide and Conquer:
Merge Sort

n  We’ve seen how divide and conquer
works in other types of problems. How
could we apply it to sorting?

n  Say you and your friend have a deck of
shuffled cards you’d like to sort. Each
of you could take half the cards and
sort them. Then all you’d need is a way
to recombine the two sorted stacks!

Python Programming, 2/e 88

Divide and Conquer:
Merge Sort

n  This process of combining two sorted
lists into a single sorted list is called
merging.

n  Our merge sort algorithm looks like:
split nums into two halves
sort the first half
sort the second half
merge the two sorted halves back into nums

Python Programming, 2/e 89

Divide and Conquer:
Merge Sort

n  Step 1: split nums into two halves
n  Simple! Just use list slicing!

n  Step 4: merge the two sorted halves
back into nums
n  This is simple if you think of how you’d do it

yourself…
n  You have two sorted stacks, each with the

smallest value on top. Whichever of these two is
smaller will be the first item in the list.

Python Programming, 2/e 90

Divide and Conquer:
Merge Sort

n  Once the smaller value is removed, examine both
top cards. Whichever is smaller will be the next
item in the list.

n  Continue this process of placing the smaller of the
top two cards until one of the stacks runs out, in
which case the list is finished with the cards from
the remaining stack.

n  In the following code, lst1 and lst2 are the
smaller lists and lst3 is the larger list for the
results. The length of lst3 must be equal to the
sum of the lengths of lst1 and lst2.

Python Programming, 2/e 91

Divide and Conquer:
Merge Sort
def merge(lst1, lst2, lst3):
 # merge sorted lists lst1 and lst2 into lst3

 # these indexes keep track of current position in each list
 i1, i2, i3 = 0, 0, 0 # all start at the front
 n1, n2 = len(lst1), len(lst2)

 # Loop while both lst1 and lst2 have more items

 while i1 < n1 and i2 < n2:
 if lst1[i1] < lst2[i2]: # top of lst1 is smaller
 lst3[i3] = lst1[i1] # copy it into current spot in lst3
 i1 = i1 + 1
 else: # top of lst2 is smaller
 lst3[i3] = lst2[i2] # copy itinto current spot in lst3
 i2 = i2 + 1
 i3 = i3 + 1 # item added to lst3, update position

Python Programming, 2/e 92

Divide and Conquer:
Merge Sort
 # Here either lst1 or lst2 is done. One of the following loops
 # will execute to finish up the merge.

 # Copy remaining items (if any) from lst1
 while i1 < n1:
 lst3[i3] = lst1[i1]
 i1 = i1 + 1
 i3 = i3 + 1

 # Copy remaining items (if any) from lst2
 while i2 < n2:
 lst3[i3] = lst2[i2]
 i2 = i2 + 1
 i3 = i3 + 1

Python Programming, 2/e 93

Divide and Conquer:
Merge Sort

n  We can slice a list in two, and we can
merge these new sorted lists back into
a single list. How are we going to sort
the smaller lists?

n  We are trying to sort a list, and the
algorithm requires two smaller sorted
lists… this sounds like a job for
recursion!

Python Programming, 2/e 94

Divide and Conquer:
Merge Sort

n  We need to find at least one base case
that does not require a recursive call,
and we also need to ensure that
recursive calls are always made on
smaller versions of the original problem.

n  For the latter, we know this is true since
each time we are working on halves of
the previous list.

Python Programming, 2/e 95

Divide and Conquer:
Merge Sort

n  Eventually, the lists will be halved into lists
with a single element each. What do we
know about a list with a single item?

n  It’s already sorted!! We have our base
case!

n  When the length of the list is less than 2,
we do nothing.

n  We update the mergeSort algorithm to
make it properly recursive…

Python Programming, 2/e 96

Divide and Conquer:
Merge Sort
if len(nums) > 1:

 split nums into two halves
 mergeSort the first half

 mergeSort the seoncd half

 mergeSort the second half

 merge the two sorted halves back into nums

Python Programming, 2/e 97

Divide and Conquer:
Merge Sort
def mergeSort(nums):
 # Put items of nums into ascending order
 n = len(nums)
 # Do nothing if nums contains 0 or 1 items
 if n > 1:
 # split the two sublists
 m = n/2
 nums1, nums2 = nums[:m], nums[m:]
 # recursively sort each piece
 mergeSort(nums1)
 mergeSort(nums2)
 # merge the sorted pieces back into original list
 merge(nums1, nums2, nums)

Python Programming, 2/e 98

Divide and Conquer:
Merge Sort

n  Recursion is closely related to the idea
of mathematical induction, and it
requires practice before it becomes
comfortable.

n  Follow the rules and make sure the
recursive chain of calls reaches a base
case, and your algorithms will work!

Python Programming, 2/e 99

Comparing Sorts

n  We now have two sorting algorithms.
Which one should we use?

n  The difficulty of sorting a list depends
on the size of the list. We need to figure
out how many steps each of our sorting
algorithms requires as a function of the
size of the list to be sorted.

Python Programming, 2/e 100

Comparing Sorts
n  Let’s start with selection sort.
n  In this algorithm we start by finding the

smallest item, then finding the smallest of the
remaining items, and so on.

n  Suppose we start with a list of size n. To find
the smallest element, the algorithm inspects
all n items. The next time through the loop, it
inspects the remaining n-1 items. The total
number of iterations is:
n + (n-1) + (n-2) + (n-3) + … + 1

Python Programming, 2/e 101

Comparing Sorts

n  The time required by selection sort to
sort a list of n items is proportional to
the sum of the first n whole numbers,
or .

n  This formula contains an n2 term,
meaning that the number of steps in
the algorithm is proportional to the
square of the size of the list.

()1
2

n n +

Python Programming, 2/e 102

Comparing Sorts

n  If the size of a list doubles, it will take
four times as long to sort. Tripling the
size will take nine times longer to sort!

n  Computer scientists call this a quadratic
or n2 algorithm.

Python Programming, 2/e 103

Comparing Sorts

n  In the case of the merge sort, a list is
divided into two pieces and each piece
is sorted before merging them back
together. The real place where the
sorting occurs is in the merge function.

Python Programming, 2/e 104

Comparing Sorts

n  This diagram shows how [3,1,4,1,5,9,2,6]
is sorted.

n  Starting at the bottom, we have to copy
the n values into the second level.

Python Programming, 2/e 105

Comparing Sorts

n  From the second to third levels the n values
need to be copied again.

n  Each level of merging involves copying n
values. The only remaining question is how
many levels are there?

Python Programming, 2/e 106

Comparing Sorts

n  We know from the analysis of binary
search that this is just log2n.

n  Therefore, the total work required to
sort n items is nlog2n.

n  Computer scientists call this an n log n
algorithm.

Python Programming, 2/e 107

Comparing Sorts

n  So, which is going to be better, the n2
selection sort, or the n logn merge sort?

n  If the input size is small, the selection sort
might be a little faster because the code is
simpler and there is less overhead.

n  What happens as n gets large? We saw in our
discussion of binary search that the log
function grows very slowly, so nlogn will grow
much slower than n2.

Python Programming, 2/e 108

Comparing Sorts

Python Programming, 2/e 109

Hard Problems

n  Using divide-and-conquer we could
design efficient algorithms for searching
and sorting problems.

n  Divide and conquer and recursion are
very powerful techniques for algorithm
design.

n  Not all problems have efficient
solutions!

Python Programming, 2/e 110

Towers of Hanoi

n  One elegant application of recursion is to the
Towers of Hanoi or Towers of Brahma puzzle
attributed to Édouard Lucas.

n  There are three posts and sixty-four
concentric disks shaped like a pyramid.

n  The goal is to move the disks from one post
to another, following these three rules:

Python Programming, 2/e 111

Towers of Hanoi
n  Only one disk may be moved at a time.
n  A disk may not be “set aside”. It may only be

stacked on one of the three posts.
n  A larger disk may never be placed on top of a

smaller one.

Python Programming, 2/e 112

Towers of Hanoi

n  If we label the posts as A, B, and C, we could
express an algorithm to move a pile of disks from A
to C, using B as temporary storage, as:
Move disk from A to C
Move disk from A to B
Move disk from C to B

Python Programming, 2/e 113

Towers of Hanoi

n  Let’s consider some easy cases –
n  1 disk

Move disk from A to C
n  2 disks

Move disk from A to B
Move disk from A to C
Move disk from B to C

Python Programming, 2/e 114

Towers of Hanoi

n  3 disks
To move the largest disk to C, we first
need to move the two smaller disks out of
the way. These two smaller disks form a
pyramid of size 2, which we know how to
solve.
Move a tower of two from A to B
Move one disk from A to C
Move a tower of two from B to C

Python Programming, 2/e 115

Towers of Hanoi
n  Algorithm: move n-disk tower from source to

destination via resting place

move n-1 disk tower from source to resting place
move 1 disk tower from source to destination
move n-1 disk tower from resting place to
destination

n  What should the base case be?
Eventually we will be moving a tower of
size 1, which can be moved directly
without needing a recursive call.

Python Programming, 2/e 116

Towers of Hanoi

n  In moveTower, n is the size of the tower
(integer), and source, dest, and temp are
the three posts, represented by “A”, “B”, and
“C”.

n  def moveTower(n, source, dest, temp):
 if n == 1:
 print("Move disk from", source, "to", dest+".")
 else:
 moveTower(n-1, source, temp, dest)
 moveTower(1, source, dest, temp)
 moveTower(n-1, temp, dest, source)

Python Programming, 2/e 117

Towers of Hanoi

n  To get things started, we need to supply
parameters for the four parameters:
def hanoi(n):
 moveTower(n, "A", "C", "B")

n  >>> hanoi(3)
Move disk from A to C.
Move disk from A to B.
Move disk from C to B.
Move disk from A to C.
Move disk from B to A.
Move disk from B to C.
Move disk from A to C.

Python Programming, 2/e 118

Towers of Hanoi

n  Why is this a “hard
problem”?

n  How many steps in
our program are
required to move a
tower of size n?

Number of
Disks

Steps in
Solution

1 1

2 3

3 7

4 15

5 31

Python Programming, 2/e 119

Towers of Hanoi
n  To solve a puzzle of size n will require 2n-1

steps.
n  Computer scientists refer to this as an

exponential time algorithm.
n  Exponential algorithms grow very fast.
n  For 64 disks, moving one a second, round the

clock, would require 580 billion years to
complete. The current age of the universe is
estimated to be about 15 billion years.

Python Programming, 2/e 120

Towers of Hanoi

n  Even though the algorithm for Towers of
Hanoi is easy to express, it belongs to a
class of problems known as intractable
problems – those that require too many
computing resources (either time or
memory) to be solved except for the
simplest of cases.

n  There are problems that are even harder
than the class of intractable problems.

Python Programming, 2/e 121

The Halting Problem

n  Let’s say you want to write a program that
looks at other programs to determine
whether they have an infinite loop or not.

n  We’ll assume that we need to also know the
input to be given to the program in order to
make sure it’s not some combination of input
and the program itself that causes it to
infinitely loop.

Python Programming, 2/e 122

The Halting Problem
n  Program Specification:

n  Program: Halting Analyzer
n  Inputs: A Python program file. The input for the

program.
n  Outputs: “OK” if the program will eventually stop.
“FAULTY” if the program has an infinite loop.

n  You’ve seen programs that look at programs
before – like the Python interpreter!

n  The program and its inputs can both be
represented by strings.

Python Programming, 2/e 123

The Halting Problem

n  There is no possible algorithm that can
meet this specification!

n  This is different than saying no one’s
been able to write such a program… we
can prove that this is the case using a
mathematical technique known as proof
by contradiction.

Python Programming, 2/e 124

The Halting Problem

n  To do a proof by contradiction, we
assume the opposite of what we’re
trying to prove, and show this leads to
a contradiction.

n  First, let’s assume there is an algorithm
that can determine if a program
terminates for a particular set of inputs.
If it does, we could put it in a function:

Python Programming, 2/e 125

The Halting Problem
n  def terminates(program, inputData):

 # program and inputData are both strings
 # Returns true if program would halt when run
 # with inputData as its input

n  If we had a function like this, we could write
the following program:

n  # turing.py

def terminates(program, inputData):
 # program and inputData are both strings
 # Returns true if program would halt when run
 # with inputData as its input

Python Programming, 2/e 126

The Halting Problem
def main():
 # Read a program from standard input
 lines = []
 print("Type in a program (type 'done' to quit).")
 line = input("")
 while line != "done":
 lines.append(line)
 line = input("")
 testProg = "\n".join(lines)

 # If program halts on itself as input, go into
 # an inifinite loop
 if terminates(testProg, testProg):
 while True:
 pass # a pass statement does nothing

Python Programming, 2/e 127

The Halting Problem

n  The program is called “turing.py” in
honor of Alan Turing, the British
mathematician who is considered to be
the “father of Computer Science”.

n  Let’s look at the program step-by-step
to see what it does…

Python Programming, 2/e 128

The Halting Problem

n  turing.py first reads in a program typed by
the user, using a sentinel loop.

n  The join method then concatenates the
accumulated lines together, putting a newline
(\n) character between them.

n  This creates a multi-line string representing
the program that was entered.

Python Programming, 2/e 129

The Halting Problem

n  turing.py next uses this program as not
only the program to test, but also as the
input to test.

n  In other words, we’re seeing if the program
you typed in terminates when given itself as
input.

n  If the input program terminates, the turing
program will go into an infinite loop.

Python Programming, 2/e 130

The Halting Problem

n  This was all just a set-up for the big
question: What happens when we run
turing.py, and use turing.py as
the input?

n  Does turing.py halt when given itself
as input?

Python Programming, 2/e 131

The Halting Problem

n  In the terminates function, turing.py will
be evaluated to see if it halts or not.

n  We have two possible cases:
n  turing.py halts when given itself as input

n  Terminates returns true
n  So, turing.py goes into an infinite loop
n  Therefore turing.py doesn’t halt, a

contradiction

Python Programming, 2/e 132

The Halting Problem
n  Turing.py does not halt

n  terminates returns false
n  When terminates returns false, the program

quits
n  When the program quits, it has halted, a

contradiction

n  The existence of the function terminates
would lead to a logical impossibility, so we
can conclude that no such function exists.

Python Programming, 2/e 133

Conclusions

n  Computer Science is more than
programming!

n  The most important computer for any
computing professional is between their
ears.

n  You should become a computer
scientist!

